1,663 research outputs found

    Quantitative characterization of three-dimensional pore structure in hardened cement paste using X-ray microtomography combined with centrifuge driven metal alloy intrusion

    Get PDF
    In this paper, a centrifuge device is proposed to facilitate the intrusion of a low-melting point metal alloy into the pore space of hardened cement paste. X-ray microtomography is combined with metal centrifugation porosimetry (MCP) to quantitatively investigate 3D pore structure. The low-melting-point metal alloy is melted and introduced into pore space in pastes with water cement ratio of 0.5 and 1.0 at a temperature of 65 °C. 3D pore structure is quantitatively analyzed by X-ray microtomography after the molten metal alloy has been consolidated. A new threshold value segmentation method for pore space was proposed using conversion coefficient on region of interest (ROI). Porosity and pore size distribution are tested by MCP and compared with the results based on mercury intrusion porosimetry (MIP). The results show that the contrast between pore space and solid phase in the X-ray microtomography device image is improved. The total porosity obtained by MCP was found to be consistent with the results obtained by MIP

    On the stationarity of linearly forced turbulence in finite domains

    Full text link
    A simple scheme of forcing turbulence away from decay was introduced by Lundgren some time ago, the `linear forcing', which amounts to a force term linear in the velocity field with a constant coefficient. The evolution of linearly forced turbulence towards a stationary final state, as indicated by direct numerical simulations (DNS), is examined from a theoretical point of view based on symmetry arguments. In order to follow closely the DNS the flow is assumed to live in a cubic domain with periodic boundary conditions. The simplicity of the linear forcing scheme allows one to re-write the problem as one of decaying turbulence with a decreasing viscosity. Scaling symmetry considerations suggest that the system evolves to a stationary state, evolution that may be understood as the gradual breaking of a larger approximate symmetry to a smaller exact symmetry. The same arguments show that the finiteness of the domain is intimately related to the evolution of the system to a stationary state at late times, as well as the consistency of this state with a high degree of isotropy imposed by the symmetries of the domain itself. The fluctuations observed in the DNS for all quantities in the stationary state can be associated with deviations from isotropy. Indeed, self-preserving isotropic turbulence models are used to study evolution from a direct dynamical point of view, emphasizing the naturalness of the Taylor microscale as a self-similarity scale in this system. In this context the stationary state emerges as a stable fixed point. Self-preservation seems to be the reason behind a noted similarity of the third order structure function between the linearly forced and freely decaying turbulence, where again the finiteness of the domain plays an significant role.Comment: 15 pages, 7 figures, changes in the discussion at the end of section VI, formula (60) correcte

    Exact solution of the one-dimensional ballistic aggregation

    Full text link
    An exact expression for the mass distribution ρ(M,t)\rho(M,t) of the ballistic aggregation model in one dimension is derived in the long time regime. It is shown that it obeys scaling ρ(M,t)=t4/3F(M/t2/3)\rho(M,t)=t^{-4/3}F(M/t^{2/3}) with a scaling function F(z)z1/2F(z)\sim z^{-1/2} for z1z\ll 1 and F(z)exp(z3/12)F(z)\sim \exp(-z^3/12) for z1z\gg 1. Relevance of these results to Burgers turbulence is discussed.Comment: 11 pages, 2 Postscript figure

    C02(nu2)-0 Quenching Rate Coefficient Derived from Coincidental Fort Collins Lidar and SABER Measurements

    Get PDF
    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments

    Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    Get PDF
    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules

    Circulation Statistics in Three-Dimensional Turbulent Flows

    Full text link
    We study the large λ\lambda limit of the loop-dependent characteristic functional Z(λ)=Z(\lambda)=, related to the probability density function (PDF) of the circulation around a closed contour cc. The analysis is carried out in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of the saddle-point technique. Axisymmetric instantons, labelled by the component σzz\sigma_{zz} of the strain field -- a partially annealed variable in our formalism -- are obtained for a circular loop in the xyxy plane, with radius defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant, leading to the lorentzian asymptotic behavior Z(λ)1/λ2Z(\lambda) \sim 1/{\lambda^2}. The O(1/λ4){\cal O}(1 / {\lambda^4}) subleading correction and the asymmetry between right and left PDF tails due to parity breaking mechanisms are also investigated.Comment: Computations are discussed in a more detailed way; accepted for publication in Physical Review

    Supersonic turbulence and structure of interstellar molecular clouds

    Get PDF
    The interstellar medium (ISM) provides a unique laboratory for highly supersonic, driven hydrodynamics turbulence. We present a theory of such turbulence, confirm it by numerical simulations, and use the results to explain observational properties of interstellar molecular clouds, the regions where stars are born.Comment: 5 pages, 3 figures include

    Large Amplitude Perturbations in Mesospheric OH Meinel and 87-km Na Lidar Temperatures Around the Autumnal Equinox

    Get PDF
    Two high‐precision CEDAR instruments, an OH Mesospheric Temperature Mapper (MTM) and a Na Temperature Lidar, have been used to investigate seasonal variability in the mid‐latitude temperature at ∼87 km altitude over the western USA. Here we report the observation of a large perturbation in mesospheric temperature that occurs shortly after the autumnal equinox in close association with the penetration of planetary‐wave energy from the troposphere into the mesosphere. This perturbation has been observed on three occasions and exhibits a departure of up to ∼25–30 K from the nominal seasonal trend during a disturbed period of ∼2 weeks. Such behavior represents a dramatic transient departure from the seasonal trend expected on the basis of current empirical models. These novel results coupled with a recent TIME‐GCM modeling study [Liu et al., 2000] provide important insight into the role of planetary waves in mesospheric variability during the equinox periods

    Dispersive stabilization of the inverse cascade for the Kolmogorov flow

    Full text link
    It is shown by perturbation techniques and numerical simulations that the inverse cascade of kink-antikink annihilations, characteristic of the Kolmogorov flow in the slightly supercritical Reynolds number regime, is halted by the dispersive action of Rossby waves in the beta-plane approximation. For beta tending to zero, the largest excited scale is proportional to the logarithm of one over beta and differs strongly from what is predicted by standard dimensional phenomenology which ignores depletion of nonlinearity.Comment: 4 pages, LATEX, 3 figures. v3: revised version with minor correction

    An Intersecting Loop Model as a Solvable Super Spin Chain

    Get PDF
    In this paper we investigate an integrable loop model and its connection with a supersymmetric spin chain. The Bethe Ansatz solution allows us to study some properties of the ground state. When the loop fugacity qq lies in the physical regime, we conjecture that the central charge is c=q1c=q-1 for qq integer <2< 2. Low-lying excitations are examined, supporting a superdiffusive behavior for q=1q=1. We argue that these systems are interesting examples of integrable lattice models realizing c0c \leq 0 conformal field theories.Comment: latex file, 7 page
    corecore